Developments of Mindlin-Reissner Plate Elements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Elements for the Reissner–Mindlin Plate Model

In this work-in-progress we report on a new approach to obtaining stable locking-free discretizations of the Reissner–Mindlin plate model. For a plate of thickness t with midplane section Ω ⊂ R the clamped Reissner–Mindlin plate model determines ω , the transverse displacement of the midplane, and φ , the rotation of fibers normal to the midplane, as the unique minimizer over H̊1(Ω)× H̊(Ω) of the...

متن کامل

Analysis of some low order quadrilateral Reissner-Mindlin plate elements

Four quadrilateral elements for the Reissner-Mindlin plate model are considered. The elements are the stabilized MITC4 element of Lyly, Stenberg and Vihinen [27], the MIN4 element of Tessler and Hughes [35], the Q4BL element of Zienkiewicz et al [39] and the FMIN4 element of Kikuchi and Ishii [21]. For all elements except the Q4BL element, a unifying variational formulation is introduced, and o...

متن کامل

Locking-free finite elements for the Reissner-Mindlin plate

Two new families of Reissner-Mindlin triangular finite elements are analyzed. One family, generalizing an element proposed by Zienkiewicz and Lefebvre, approximates (for k ≥ 1) the transverse displacement by continuous piecewise polynomials of degree k + 1, the rotation by continuous piecewise polynomials of degree k+ 1 plus bubble functions of degree k+ 3, and projects the shear stress into th...

متن کامل

Finite Elements for Reissner-Mindlin plate bending problems

We consider the plate bending problem in the framework of the Reissner-Mindlin theory. For a clamped plate, the problem can be written in variational form as follows. Find (θ, w) ∈ (H 0 (Ω)) ×H 0 (Ω) : ∫ Ω Cε(θ) : ε(η) + μ t−2 ∫ Ω (∇w − θ) · (∇v − η) = ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2015

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2015/456740